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 1 

Abstract 24 

       The impact of assimilating Global Precipitation Mission (GPM) Microwave Imager (GMI) 25 

clear-sky radiance on the track and intensity forecasts of two Atlantic hurricanes during the 2015 26 

and 2016 hurricane seasons is assessed using the Hurricane Weather Research and Forecasting 27 

(HWRF) model. The GMI clear-sky brightness temperature is assimilated using a Gridpoint 28 

Statistical Interpolation (GSI)-based hybrid ensemble-variational data assimilation system, which 29 

utilizes the Community Radiative Transfer Model (CRTM) as a forward operator for satellite 30 

sensors. A two-step bias correction approach, which combines a linear regression procedure and 31 

variational bias correction, is used to remove most of the systematic biases prior to data 32 

assimilation. 33 

 Forecast results show that assimilating GMI clear-sky radiance has positive impacts on both 34 

track and intensity forecasts, with the extent depending on the phase of hurricane evolution. 35 

Forecast verifications against dropsonde soundings and reanalysis data show that assimilating GMI 36 

clear-sky radiance, when it does not overlap with overpasses of other microwave sounders, can 37 

improve forecasts of both thermodynamic (e.g., temperature and specific humidity) and dynamic 38 

variables (geopotential height and wind field), which in turn lead to better track forecasts and a 39 

more realistic hurricane inner-core structure. Even when other microwave sounders are present 40 

(e.g., AMSU-A, ATMS, MHS, etc.), the assimilation of GMI still reduces temperature forecast 41 

errors in the near-hurricane environment, which has a significant impact on the intensity forecast.  42 

  43 
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1. Introduction 44 

Since the 1990s, satellite observations have become a major source of observations for 45 

numerical weather prediction (NWP), owing to the rapid development of radiative transfer models, 46 

data assimilation technologies, and launches of numerous major satellites. Specifically, data 47 

assimilation allows the incorporation of observational information into the NWP system if the 48 

transformation of analysis variables into the form of observations is achievable. For satellite 49 

radiance observations, this can be accomplished by using fast radiative transfer models, which 50 

simulate the satellite-observed radiances for a given atmospheric state, satellite scan geometry, and 51 

surface properties. The atmospheric state is then adjusted according to differences between 52 

simulated and observed radiances such that the final analysis is at the maximum likelihood (e.g., 53 

Derber and Wu 1998). Many studies have demonstrated the added benefits to NWP of directly 54 

assimilating satellite radiance observations in both global models (Derber and Wu 1998; McNally 55 

et al. 2000; Okamoto and Derber 2006; Bauer et al. 2006; Miyoshi and Sato 2007; Sakamoto and 56 

Christy 2009; Goerss 2009; Aravéquia et al. 2011; Hoppel et al. 2013) and regional models (e.g., 57 

Zou et al. 2011; Liu et al. 2012; Qin et al. 2013; M. Zhang et al. 2013; S. Zhang et al. 2013; 58 

Kazumori 2014; Wang wt al. 2015; Lin et al. 2017). 59 

 So far, the assimilation of radiance observations are known to be able to significantly reduce 60 

error in NWP, specifically over regions where conventional observations are sparse. For instance, 61 

hurricane forecasts, in particular, benefit greatly from the large spatial coverage over oceans and 62 

the high temporal resolution of satellite observations. This is because hurricanes form and evolve 63 

mostly over the oceans, where conventional observations such as radiosonde and surface 64 

observations are less available. Since the last decade, the research community has devoted great 65 

effort to assimilating satellite observations to improve hurricane track and intensity predictions 66 
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(Pu et al. 2002 and 2008; Pu and Zhang 2010; Liu et al. 2012; Xu et al. 2013; Zou et al. 2013; 67 

Zhang and Pu 2014; Yang et al. 2016; Xu et al. 2016; Wu et al. 2016). Specifically, these previous 68 

studies found that satellite microwave sounders is particularly useful for understanding moist 69 

processes associated with hurricanes owing to its unique capability to depict precipitation structure 70 

and moisture processes. 71 

Global Precipitation Measurement (GPM) is a recent constellation-based satellite mission with 72 

microwave imagery that was initiated by the National Aeronautics and Space Administration 73 

(NASA) and the Japan Aerospace Exploration Agency (JAXA). Building upon the success of its 74 

predecessor, the Tropical Rainfall Measuring Mission (TRMM), GPM aims to unify and advance 75 

next-generation precipitation measurement from a constellation of both research and operational 76 

satellites (Hou et al. 2014). Launched on 28 February 2014, the GPM core observatory is equipped 77 

with the first spaceborne dual-frequency precipitation radar, and a conical-scanning multichannel 78 

microwave imager. Specifically, the GPM Microwave Imager (GMI) not only inherits the nine 79 

channels of the TRMM Microwave Imager (TMI) to detect heavy to light precipitation, but also 80 

includes four additional high-frequency channels (166 GHz and 183 GHz) to improve sensitivity 81 

to and detection of snowfall. In addition, GMI at least doubles the spatial resolution of the channels 82 

in TMI and has one of the highest resolutions among the group of GPM constellation satellites. 83 

Furthermore, the outstanding calibration of GMI also serves as a reference for the intercalibration 84 

of other microwave sounders in the GPM constellation to ensure a physically consistent brightness 85 

temperature. 86 

Because of the numerous improvements that GPM brings compared to TRMM, it is expected 87 

that assimilating GMI radiance will have a positive impact on hurricane track and intensity 88 

forecasts. In this study, we investigate the impact of assimilating GMI clear-sky radiance on 89 



 4 

hurricane track and intensity forecasts using the National Centers for Environmental Prediction 90 

(NCEP) Hurricane Weather Research and Forecasting (HWRF) model and the Gridpoint Statistical 91 

Interpolation (GSI)-based hybrid of ensemble and three-dimensional variational (3DVar) data 92 

assimilation systems. Two notable Atlantic hurricane cases, Hurricanes Joaquin (2015) and 93 

Matthew (2016), are used for case studies in this paper. 94 

The paper is organized as follows: Section 2 gives a brief introduction to the GMI 95 

observations, HWRF model, GSI data assimilation system, hurricane cases, and experimental 96 

setting designs. Section 3 provides details about quality control (QC) and bias correction (BC). 97 

Assimilation and forecast results and validation of the data impact are discussed in Section 4. 98 

Section 5 summarizes results and provides concluding remarks. 99 

2. GMI observations, HWRF model, data assimilation system, and 100 

experimental configurations 101 

a. GMI observations 102 

GMI is a conical scanning passive microwave radiometer with 13 microwave channels, 103 

ranging from 10 GHz to 183 GHz. Channels 1 to 9 of GMI have frequencies (10 GHz to 89 GHz) 104 

similar to those of its predecessor, the TRMM Microwave Imager (TMI). Responsible for sensing 105 

liquid precipitation and the lower-troposphere moisture profile, these channels obtain moisture and 106 

temperature information in the lower troposphere (> 800 hPa). In addition, GMI includes four 107 

high-frequency channels (Ch. 10 to 13) that are responsible for detection of light precipitation and 108 

snowfall. Using a conical scan design, the GMI main reflector has a rotation rate of 32 rpm, 109 

scanning a 140° sector centered on the spacecraft ground track with an altitude of about 407 km. 110 

This scan configuration gives a cross-track swath covering roughly 885 km above the earth’s 111 

surface. In terms of scan geometry, GMI uses two sets of scan angles for the thirteen channels. 112 



 5 

The first nine channels scan at an off-nadir angle of 48.5°, while the remaining four channels scan 113 

at 45.46°  (see details in Hou et al. 2014).  In this study, the GMI Level 1C-R common calibrated 114 

and co-registered high-frequency and low-frequency brightness temperature data in all 13 115 

microwave channels are assimilated. 116 

b. HWRF model, data assimilation system, and the forward model 117 

The HWRF system was developed at NCEP to provide numerical guidance for the 118 

forecasting of tropical cyclone tracks, intensity, and structure (Gopalakrishnan et al. 2011). It uses 119 

the Nonhydrostatic Mesoscale Model (NMM) core of the Weather Research and Forecasting 120 

(WRF) system as its dynamic solver. Since 2011, HWRF has adopted a triply nested domain 121 

configuration. Specifically, HWRF Version 3.7 (see details in Tallapragada et al. 2015) is used in 122 

this study, in which the parent domain is configured with 18-km horizontal resolution, covering 123 

roughly 80°	 × 	80° on a rotated latitude/longitude E-staggered grid. The intermediate and inner 124 

nest domains are two-way interactive nesting and move along with the storm, with resolutions of 125 

about 6 km and 2 km, covering about 12°	 × 	12° and 7.1°	 × 	7.1°, respectively (see Figure 1). The 126 

configuration of the HWRF model is set as close as possible to the operational HWRF model in 127 

the hurricane season of 2015.  128 

The current data assimilation system for HWRF is the NCEP Gridpoint Statistical 129 

Interpolation (GSI)-based hybrid ensemble–three dimensional variational (3DVar) data 130 

assimilation system. The cost function used in the data assimilation system is defined as:  131 

𝐽(𝑥) =
1
2
(𝑥 − 𝑥2)3(𝛽5𝐵5 + 𝛽8𝐵8)95(𝑥 − 𝑥2) + 	

1
2 	
:𝑦< − 𝐻(𝑥)>

3
𝑅95:𝑦< − 𝐻(𝑥)>									(1) 132 

 133 
where the first term is the background error term with a hybrid background error covariance, which 134 

is a sum of two parts: a prescribed static matrix 𝐵5 and a flow-dependent part of the background 135 

covariance matrix 𝐵8 estimated using the 6-h forecast of the 80-member ensemble Kalman filter 136 
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(EnKF) for the NCEP Global Forecast System (GFS). The weighting factors for (𝛽5	𝑎𝑛𝑑		𝛽8) are 137 

set to be 0.2 and 0.8, respectively. The second term is an observational error term. The operator 𝐻 138 

is the forward model, which includes the Community Radiative Transfer Model (CRTM) as its 139 

radiative transfer component for satellite radiance assimilation. CRTM is a fast-radiative transfer 140 

model developed by the Joint Center for Satellite Data Assimilation (JCSDA) at NOAA. A 141 

comprehensive description of CRTM can be found in Han et al. (2006) and Weng (2007). CRTM 142 

is able to simulate radiances of a large number of sensors onboard, including GMI. For clear-sky 143 

simulation over the ocean, basic inputs include atmospheric vertical profiles (e.g., temperature, 144 

specific humidity), surface parameters (e.g., surface temperature, wind speed and direction) and 145 

sensor geometry (e.g., sensor zenith angle, sensor height). In addition to radiance computation, 146 

CRTM also includes calculation of the Jacobian and adjoint model for facilitating various data 147 

assimilation–related applications. 148 

c. Experimental configurations 149 

In this study, two notable recent hurricanes cases, Hurricane Joaquin (2015) and Hurricane 150 

Matthew (2016), are selected in order to examine the impact of assimilation of GMI clear-sky 151 

radiance on hurricane track and intensity forecasts.   152 

 Before data assimilation, the HWRF model employs a vortex initialization procedure (Liu et 153 

al. 2006) to correct the storm position and intensity approach to the real-time estimation (see details 154 

in Tallapragada et al. 2015). This procedure consists of two components: a vortex relocation, which 155 

places the hurricane vortex at the location from the National Hurricane Center (NHC) tropical 156 

cyclone vital statistics (TCVitals) database, and an intensity and size correction, which adjusts the 157 

intensity and vortex structure using the TCVitals database.  However, previous studies have shown 158 

that vortex initialization and data assimilation counteract each other in some cases (Tallapragada 159 
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et al. 2015). In addition, vortex initialization can also induce imbalances in the initial conditions 160 

and lead to vortex spin-down problems in HWRF forecasts in some cases (Pu et al. 2016). In these 161 

situations, impacts from data assimilation can be hard to interpret clearly. In order to clearly 162 

demonstrate the impact of GMI data assimilation, the intensity correction component is turned off 163 

in all data assimilation experiments presented in this study. However, the vortex relocation is still 164 

used for data assimilation experiments to avoid potential phase errors that may put observations 165 

in wrong locations and result harm to the vortex inner-core. 166 

 In addition, the current operational HWRF uses the NCEP Global Forecast System (GFS) 167 

analysis to initialize the outer domain (d01) and also uses the GFS forecast to provide the boundary 168 

conditions for d01. Since observations over the parent domain are already assimilated in the global 169 

data assimilation, the operational HWRF data assimilation is performed only at the inner 6- and 2-170 

km nests (Biswas et al. 2015). However, since GMI radiance has not yet been assimilated in the 171 

operational GFS, assimilation of GMI radiance over the parent domain is desired in order to assess 172 

its full data impact. To achieve this, we initialize the parent domain using the GFS 6-hour forecast, 173 

employing the same procedure as in the inner 6- and 2-km inner nests to achieve data assimilation 174 

over the parent domain. In each of these experiments, the parent domain assimilates the same types 175 

of data as are assimilated in the ghost domain 2.  176 

   Several sets of data assimilation experiments (with and without GMI data) are performed to 177 

evaluate the impact of assimilating GMI radiance on hurricane simulations (see the list of 178 

experiments in Table 1) using the GSI-based ensemble-3DVAR (GSI hereafter for simplicity) data 179 

assimilation system. Each set of experiments consists of a control experiment (CTRL), which 180 

assimilates all data (except for the tail Doppler radar data because the data were absent in many 181 

cases in this study) that are currently assimilated in operational HWRF, including conventional 182 
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data, GPS RO data, satellite-derived winds, and satellite radiance observations from both 183 

microwave (e.g., AMSU-A, ATMS, MHS, etc) and infrared (e.g., AIRS, IASI, etc.) sensors, and 184 

the GMI data assimilation experiment (GMI), which is the same as CTRL but with GMI clear-sky 185 

radiance assimilated in the parent domain and ghost domain 2. For all experiments, the HWRF 186 

model is spun up by regular 6-hourly analysis-forecast cycles with all the data assimilated into the 187 

CTRL experiments (as described above) till 6-h before the data assimilation experiments with GMI.  188 

Specifically,  for Hurricane Joaquin, the mature phase of its life cycle is emphasized for the 189 

experiments in this study. The spin-up period is from 00UTC 29 September 2015 till 00 UTC 1 190 

October 2015. Then, the data assimilation experiments are performed in 6-hourly analysis-forecast 191 

cycles from 0600 UTC 1 October to 1800 UTC 2 October 2015 with GMI data, with the 192 

configurations of CTRL1 and GMI1 in Table 1. For Hurricane Matthew, both the genesis and 193 

mature phases are included. For its genesis phase, the spin-up period is from 1200 UTC 26 194 

September (when Matthew was still a tropical disturbance) till 1200 UTC 27 September 2016, and 195 

the data assimilation experiments (CTRL2 and GMI 2 in Table 1) are performed in 6-hourly 196 

analysis-forecast cycles from 1800 UTC 27 September to 0000 UTC 29 September 2016. For its 197 

mature phase, the HWRF model is spun up from 1800 UTC 30 September 2016 till 1800 UTC 2 198 

October 2016, and the data assimilation experiments (CTRL3 and GMI3 in Table 1) are performed 199 

from 0000 UTC 3 October to 1200 UTC 4 October 2016. The 120-h forecasts are performed at 200 

each analysis time after the data assimilation. 201 

3. GMI data quality control and bias correction 202 

a. Quality control (QC) 203 

        The QC for GMI clear-sky radiance in the GSI data assimilation system uses two parameters 204 

associated with cloud liquid water (CLW) and cloud ice, and three parameters associated with 205 
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surface emissivity (following Garrett et al. 2010). 206 

       First, over the sea surface, a column CLW is computed using measurements from GMI 207 

Channels 1 to 7, 12, and 13: 208 

CLW = 𝑎<,GHI + J 𝑐L	𝑇2,L
LN59O
,58,5P

+ �̂�5 log:𝑇2,P − 𝑇2,U> + �̂�8 log(𝑇2,V − 𝑇2,O)														(2) 209 

where 𝑐L	(𝑖 = 1 − 7, 12, 13) and 𝑐5̂	𝑎𝑛𝑑	𝑐8̂ are prescribed regression coefficients, and 210 

𝑇2,L	(𝑖 = 1 − 7, 12, 13) is the GMI brightness temperature at channel 𝑖. Another column cloud ice 211 

(e.g., graupel water path or GWP) parameter is computed in a similar fashion: 212 

GWP = 𝑎<,[I\ + J 𝑔L	𝑇2,L
LN59O
,58,5P

+ 𝑔:300− log:𝑇2,5<>>																																				(3) 213 

Table 2 summarizes the values of 𝑐L, 𝑐L̂, 𝑔L and �̂�. Constant thresholds of 0.05 are used for both 214 

CLW and GWP to toss pixels that are considered to be contaminated by CLW emission and ice 215 

scattering.  216 

        In addition, the GSI surface emissivity QC filters pixels affected by errors in the modeling of 217 

surface emissivity using channels that are less susceptible to the emission and absorption of water 218 

vapor, e.g., 10.65 Ghz, 18.87 Ghz, and 36.5 Ghz, each of which contributes one emissivity 219 

parameter. The emissivity parameters for these channels are calculated from an emissivity 220 

regression using all thirteen GMI channel Tb values and the model surface skin temperature. A 221 

pixel is considered to be affected by surface emissivity error if any of these three parameters 222 

exceeds a corresponding prescribed threshold. Figure 2 shows a sample of the spatial distribution 223 

of data from GMI Channel 5 brightness temperatures that pass and fail the QC in the GSI system.    224 

b.  Bias Correction (BC)    225 

 All data assimilation systems are developed based on the assumption of unbiased Gaussian 226 

observational errors. However, for satellite radiance observations, sources of bias can arise from 227 
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instrument error, such as calibration error and degradation of the instrument over time, systematic 228 

modeling error embedded in the radiative transfer model (including the implicit assumptions of 229 

the absence of cloud liquid and cloud ice), and variation of the scan angle that causes changes in 230 

the field of view at different scan positions. While random error can be handled by the data 231 

assimilation system, systematic errors (biases) can ultimately degrade the analysis, as the data 232 

assimilation system implicitly assumes an unbiased observational error (Dee 2004; Migliorini 233 

2012). Therefore, systematic error has to be removed from the observations before passing them 234 

to the data assimilation system.  235 

Bias correction for satellite observations consists of two main components: air mass–236 

dependent bias and scan angle–dependent bias. Since GSI Version 3.3, bias correction for these 237 

two components has been performed in a single step in the enhanced radiance bias correction 238 

framework. Specifically, air mass–dependent bias for each GMI channel 𝑗  is projected by a 239 

weighted linear sum of a static bias term bj, air mass–dependent predictors {𝑝L,a
(5)}, and scan angle 240 

{𝑝L,a
(8)}: 241 

𝑏a = 𝑏<,a +J𝛽L,a

P

LN5

𝑝L,a
(5)(𝑥) +J𝛼d.a

U

dN5

𝜙L	,																																											(3) 242 

where 𝛽L,a  ( 𝑖 = 1, 2, 3 ) and 𝛼d,a  ( 𝑙 = 1,… ,4 ) are bias correction coefficients for air mass 243 

components and scan angle components, respectively, and 𝜙 is the field of view number (FOVN). 244 

The air mass–dependent predictor 𝑝L,a
(5)	(𝑖 = 1,2,3) is defined as follows: 245 

𝑝5,a
(5) = (cos(𝜙))8 	× 	CLW																																																								(4) 246 

𝑝8,a
(5) = :𝛤ak − 𝛤lak>

8
																																																																				(5) 247 

𝑝P,a
(5) = 𝛤ak − 𝛤lak																																																																										(6) 248 

where 𝛤ak is the lapse rate of transmittance for channel 𝑗 and varies over pixels, and 𝛤lak is the mean 249 
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lapse rate of temperature. The 𝛤ak  in (5) and (6) is computed by the following expression: 250 

𝛤ak = −J:𝜏a,no5 − 𝜏a,n>(𝑇no5 − 𝑇n95)
p

nN5

	,																																															(7) 251 

where 𝜏a,n  is the transmittance from the kth model level to the top of atmosphere for the jth channel 252 

and is computed during CRTM integration, while 𝑇n is the temperature at the kth model level.  253 

c. BC coefficients for GMI clear-sky radiances 254 

In operational HWRF, bias correction coefficients for each sensor are prescribed in the 255 

input GFS files. However, since GMI radiance data had not yet been assimilated in the operational 256 

GFS in 2015 and 2016, BC coefficients for GMI radiance observations were not available in these 257 

input data. Therefore, in this study, the BC coefficients for GMI radiances are derived 258 

independently using a combination of a static BC method and the adaptive BC capability within 259 

GSI. Specifically, a rough estimation of the BC coefficients is computed using a linear regression 260 

on a representative set of observations minus forecasts (O-F) derived from 14 days of GMI 261 

overpasses in the region of interest. This rough estimation of coefficients is then treated as an 262 

initial guess for a variational BC inside of GSI through an iteration process over a short period of 263 

data assimilation cycles (e.g., following Zhu et al. 2014) to obtain the temporal variation of the 264 

coefficients.  265 

First, for each hurricane case, a set of 14-day overpass GMI data over the corresponding 266 

basin (North Atlantic Ocean for hurricanes Joaquin and Matthew) is collected, which spans from 267 

the genesis phase to the decay phase of the hurricane. Meanwhile, for each GMI overpass, the 268 

departure between the simulated and observed Tb (e.g., observed – first guess, or O-F) and the 269 

predictors (e.g., CLW, temperature lapse rate [Tlap] and its square, four orders of scan angles, mean 270 

bias or constant offsets) for each pixel are calculated. A multilinear regression is then used to 271 

estimate the dependence of O-F values on a set of predictors and the BC coefficients are computed. 272 
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Figure 3 shows sample results of the dependence of O-F on predictors based on statistics during 273 

the life of Hurricane Joaquin (between 26 September and 9 October 2015) for Channels 3, 5, 6, 8, 274 

and 10. There is apparent dependence between O-F and the CLW and temperature lapse rate (Tlap), 275 

respectively, with biases present, but there is no dependence between O-F and the scan angles.    276 

As mentioned, the current version of GSI uses variational bias correction to adaptively 277 

update the BC coefficients by including the coefficients as analysis variables in the data 278 

assimilation step. This advancement allows the data assimilation system to adjust the BC 279 

coefficients automatically at each analysis step and capture the temporal evolution of the 280 

coefficients effectively (Zhu et al. 2014). Using this capability of the GSI system, a GSI iteration 281 

experiment is performed to fine-tune the BC coefficients for different phases of the hurricane case 282 

studies. Details of the iteration procedure are as follows: First, for a given hurricane (e.g., Joaquin), 283 

at least 4 6-hourly data assimilation analysis-forecast cycles (each of which has at least one GMI 284 

overpass near the hurricane region) are performed. Then, using the BC coefficients obtained from 285 

linear regression as an initial guess, GSI analysis is performed sequentially at each of these 6-286 

hourly analysis-forecast cycles. At each GSI analysis, the BC coefficients are adjusted accordingly 287 

and then passed to the next analysis-forecast cycle. After the coefficients go through all data 288 

assimilation within the analysis window, one iteration is completed and the whole process is 289 

repeated again for the next iteration until the coefficients stabilize. Figure 4 shows the variation of 290 

various predictors during the iteration procedure. It shows that the BC coefficients are stable after 291 

only several iterations for most variables.  In fact, if the linear regression step is eliminated and 292 

the variational bias correction alone is used, the bias coefficients will converge (or become stable) 293 

slowly and can take more than 50 iterations to reach similar results. Zhu et al (2014) have noted 294 

that poor initial guesses of BC coefficients may lead the QC to reject/accept data of good/poor 295 
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quality. 296 

Figure 5 summarizes the O-F statistics before and after bias correction. The data sample 297 

consists of assimilated GMI observations from the first 4 analysis-forecast cycles in the GMI data 298 

assimilation experiment during the mature phase of Joaquin in HWRF d01. The comparison shows 299 

that before BC, O-F dependence on CLW follows the same trend shown in the left column of 300 

Figure 3. After BC, O-F values are distributed almost uniformly over the entire range of CLW 301 

values. This indicates that the BC coefficients obtained from the two-step bias correction approach 302 

are able to remove bias arising from CLW emission. In addition, the right column of Figure 5 303 

shows a histogram of the first-guess departure before and after BC, revealing that after BC, O-F 304 

distribution become less biased with a normal distribution around zero.  305 

4. Impact of GMI radiance data on numerical simulations of hurricanes 306 

a. Track and intensity  307 

1) HURRICANE JOAQUIN    308 

The track forecast of Hurricane Joaquin in 2015 was challenging for the forecast community. 309 

As Joaquin reached category 3 strength and became a major hurricane on 1 October 2015, it made 310 

a hairpin turn and moved northeast under the influence of a deepening mid- to upper-level trough 311 

near the southeastern United States. As mentioned in the Section 2c, the data assimilation 312 

experiments are performed from 0600 UTC 1 October to 1800 UTC 2 October (see Table 1) in 6-313 

hourly analysis-forecast cycles. A 120-h forecast is made at each analysis time of these 6-h 314 

analysis-forecast cycles after the data assimilation. 315 

Figure 6 illustrates a comparison of the aggregated track forecasts between CTRL1 (without 316 

assimilation of GMI data) and GMI1 (with assimilation of GMI data) during the cycling periods 317 

from 0600 UTC 1 October to 1800 UTC 2 October 2015. From Figure 6a, it is clear that the CTRL1 318 
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experiment shows systematic biases of forecast tracks toward the northwest side of the best track 319 

during the hairpin turn of Joaquin. These track errors are greatly reduced for experiments initiated 320 

after 0600 UTC 2 October, as the hairpin turn is close to completion. In contrast, GMI1 (Figure 321 

6b) also shows a great reduction in the magnitude of the track biases, owing to the assimilation of 322 

the GMI data. The largest difference in track forecasts between CTRL1 and GMI1 is found for the 323 

forecasts initiated at 0000 UTC 2 October. During the first 12-hour forecasts, tracks from both the 324 

CTRL1 and GMI1 experiments show good agreement with the best track. However, the tracks in 325 

CTRL1 show a more northward trend soon after, while those in GMI1 attain a more realistic 326 

eastward propagation. Track errors of CTRL1 exceed 200 km after 30 hours of forecast, while 327 

GMI1 retains a track error of less than 140 km throughout the 72-h forecast period. 328 

      The 120-hour mean track error for CTRL1 and GMI1 (as shown in Figures 6a and b), averaged 329 

over the forecasts started from each analysis of all 7 analysis-forecast cycles against the NHC best-330 

track data, is shown in Figure 6c. A consistent improvement in the track forecast is seen after the 331 

assimilation of GMI data, with roughly 20% and more than 12% reductions in track error during 332 

the first 72-h and over the entire 120-h forecasts, respectively. 333 

      Figure 7 shows a comparison of the minimum SLP and maximum surface wind forecasts 334 

between CTRL1 and GMI1 from all 7 different forecast lead times. The figure indicated an overall 335 

positive or neutral impact of GMI data assimilation on the intensity forecast for Hurricane Joaquin 336 

over 120 h forecasts, while positive impacts on the intensity forecasts at first 60-h are evident.   337 

       Figures 8a and b show the spatial distribution of assimilated brightness temperature from all 338 

microwave sensors (GMI data are highlighted in purple) over HWRF d01 at two different analysis 339 

times in GMI1. Except for GMI data, a set of microwave sounders, including the Advanced 340 

Microwave Sounding Unit-A (AMSU-A) onboard NOAA-15, NOAA-19, and METOP-A 341 
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satellites, the Microwave Humidity Sensor (MHS) onboard NOAA-18, NOAA-19, and METOP-342 

A satellites, and the Advanced Technology Microwave Sounder (ATMS) is assimilated. In each 343 

of the times shown in Figures 8a and b, GMI contains an overpass in the near-hurricane 344 

environment, where overpasses of other similar sensors are not present. This shows that the 345 

addition of GMI data to the entire pool of microwave sensors can provide more complete coverage 346 

of microwave satellite observations in the near-hurricane environment.   347 

A comparison of GMI1 with CTRL1 shows that the impacts of assimilating GMI clear-sky 348 

radiance on the intensity forecast of Joaquin are less significant. The 60-hour mean error in the 349 

maximum wind and minimum central sea level pressure (SLP) forecasts shows either neutral or 350 

marginal impacts (with less than 5% error reduction) from the assimilation of GMI data for most 351 

of the forecast time (Figure not shown).    352 

2) HURRICANE MATTHEW  353 

     Compared to Joaquin, Hurricane Matthew exhibited less uncertainty in its track throughout its 354 

life cycle. Both the genesis and mature phases of Matthew are used to further examine the impact 355 

of assimilating GMI data on track and intensity forecasts (see experimental design in Table 1). 356 

Figure 9 and 10 show comparisons of the track, minimum SLP, maximum wind forecasts between 357 

CTRL2 and GMI2 from different forecast lead times at the genesis, rapid intensification, and part 358 

of intensity change phases of Matthew from 1800 UTC 27 Sep to 0500 UTC Oct 2016. Figure 9 359 

indicated a small, neutral impact of assimilation of GMI data on the track forecast of Hurricane 360 

Matthew. However, Figure 10 reveals an obvious positive impact of GMI data assimilation on the 361 

intensity forecast with improvements in the first 60-h forecasts (up to 0000 UTC 1 Oct 2016). 362 

Specifically, it is apparent that CTRL2 (without GMI data assimilation) consistently undergoes 363 

rapid intensification too early, generally about 12 to 18 hours ahead of the best-track data (Figure 364 
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10a). In contrast, GMI2 shows a correction in the forecast of minimum SLP (Figure 10b) during 365 

the rapid intensification period. However, after 0000 UTC 1 Oct 2016, the end of Matthew’s rapid 366 

intensification, the GMI data assimilation results in mixed forecast impacts with slightly degraded 367 

intensity forecast in some cases, reflecting the complicated dynamic and physical processes 368 

involved in the intensity changes. Nevertheless, the influences of the initial conditions on forecasts 369 

should not be as significant as the physical processes after 60 hours forecasts.  Figure 10c displays 370 

the mean 120-h minimum SLP and maximum wind forecast errors. Overall, the assimilation of 371 

GMI data results in consistent positive impacts on both minimum SLP and maximum surface 372 

wind (MSW) for the first 60-h forecast while some mixed impacts afterward, although the overall 373 

averaged impacts during the 120-h forecast period are positive.  374 

      The mature phase of Matthew exhibits small uncertainty in both track and intensity forecasts. 375 

Figure 11 shows the 60-h mean track and intensity forecast, which covers the mature phase of 376 

Matthew but not the intensity change period afterward for experiments CTRL3 and GMI3. Overall, 377 

the assimilation of GMI clear-sky radiance has a neutral impact for the mature phase of Matthew.    378 

b. Impacts on hurricane large-scale environmental conditions 379 

 Further diagnoses are conducted to demonstrate the impact of GMI data assimilation on 380 

the hurricane environment. Figure 12 shows geopotential height and streamline fields at 550 hPa 381 

and 750 hPa at the 42-h forecasts for Joaquin from the CTRL1 and GMI1 experiments (valid at 382 

1800 UTC 3 October 2015), respectively, compared with the corresponding ECMWF-interim 383 

reanalysis at the valid time. While the overall environmental features are similar between the 384 

CTRL1 and GMI1 experiments, noticeable differences are seen on the northwest side of the 385 

simulated vortices. Specifically, throughout the layer from 500 to 800 mb, the flow around the 386 

vortex in GMI1 is more isolated from the deepening mid- to upper-level trough (on the northwest 387 
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side of the hurricane) than that of CTRL, similar to a separation seen in the ECMWF reanalysis 388 

field.  389 

c. Impacts on forecasts of hurricane structure: against dropsonde sounding during TCI 390 

      To further verify the impact of GMI data assimilation on hurricane forecasts, independent 391 

observations—namely, soundings obtained from a recent field program, the Tropical Cyclone 392 

Intensity (TCI) Experiment—are used. TCI is a collaborative field experiment sponsored by the 393 

Office of Naval Research (ONR), with the objective of improving forecasts of tropical cyclone 394 

intensity and structure changes (Doyle et al. 2017). During TCI, the NASA WB-57, which carries 395 

the High Definition Sounding System (HDSS) Dropsondes, is employed to sample the hurricane 396 

inner-core structure and its surrounding environment. The following verification utilizes 397 

dropsonde data collected during the mature phase of Joaquin from the HDSS. 398 

      Because many TCI soundings are taken close to the hurricane center (within 50 km of the 399 

center), choosing model profiles that have the same geophysical location as the sounding could 400 

result in significant overestimation of errors due to errors in the track forecast in each experiment. 401 

To account for this effect, model profiles in each experiment are selected such that their positions 402 

relative to the center of the simulated vortices are the same as the position of the soundings relative 403 

to the best-track hurricane center. This guarantees that the focus of comparison is on the overall 404 

inner-core structure. Figure 13 shows the distribution of TCI soundings around 1800 UTC 2 405 

October 2015 and the corresponding model verification grids (from 12-hour forecasts initiated at 406 

0600 UTC 2 October 2015). While the vortex center in GMI1 has a geophysical location similar 407 

to that of the best-track data, CTRL1 has a track error of roughly 40 km. Apparently, comparing 408 

soundings with model profiles at the same geophysical locations (indicated by black circles) is 409 

relatively unfair to CTRL1. Instead, model profiles that have the same relative positions with 410 
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respect to the simulated vortices are more reasonable.  411 

      Figure 14 reveals the results of comparing the vertical profiles of root mean square error 412 

(RMSE) and bias in temperature and specific humidity against TCI dropsonde soundings. In the 413 

comparison, only soundings that are within 150 km of the hurricane center are included. The 414 

sample contains forecasts initiated at 0600 UTC 2 October and 1200 UTC 2 October 2015, verified 415 

against TCI soundings launched around 1800 UTC 2 October and 1800 UTC 3 October, giving a 416 

total sample size of 156. From the RMSE in Figures 14a and b, the assimilation of GMI clear-sky 417 

radiance reduces error in temperature throughout the entire troposphere, while its impact on 418 

specific humidity lies mostly in the mid-troposphere (400 to 700 mb, Figure 14b). Figures 14c and 419 

d show the mean bias and the standard deviation of temperature and specific humidity at different 420 

pressure levels. For temperature, both experiments (CTRL1 and GMI1) produce warm biases in 421 

the lower troposphere (below 500 hPa) and cold bias in the upper troposphere (Figure 14c). 422 

However, these biases in GMI1 are noticeably smaller than that in CTRL1. For specific humidity, 423 

GMI data also result in reduction of the biases.   424 

      The impact of GMI on the wind field is also examined. Figures 14e-h show the comparison of 425 

RMSE for radial wind and tangential wind between CTRL1 and GMI1 verified against TCI 426 

soundings, respectively. Within a 150-km radius of the hurricane center, the wind magnitudes from 427 

both CTRL1 and GMI1 are greater than the dropsonde data at the lower levels (below 700 hPa 428 

pressure levels), while GMI data assimilation improves the radial wind fields and results in a 429 

neutral impact on tangential winds in middle and upper levels (Figure 14 e-f). The comparison is 430 

also revealed on the near-hurricane environment within a radius of between 150 and 600 km from 431 

the center, giving a sample size of 114. From Figures 14 g and h, it is found that assimilation of 432 

the GMI data results in noticeable improvements in the radial wind fields in both the lower 433 



 19 

troposphere (between 600 and 800 mb) and upper troposphere (about 300 mb), as shown in Figure 434 

14g. In terms of tangential velocity (Figure 14h), the impact of GMI is rather neutral, with some 435 

positive impact on the mid-level troposphere (between 350 and 450 mb). 436 

d. Impact on temperature and moisture fields during the genesis of Matthew  437 

 Assimilation of GMI clear-sky radiance is found to provide noticeable improvements in 438 

the intensity forecast of the genesis phase of Matthew. During this phase, it is found that 439 

widespread cold air dominates the middle to lower troposphere in the east sector of the storm, as 440 

shown by the GFS analysis between 650 mb and 850 mb. Figure 15 compares HWRF 30-h 441 

forecasts valid at 0800 UTC 29 September 2016 against the corresponding GFS analysis. It shows 442 

that both CTRL2 and GMI2 have a similar east-west temperature gradient across the storm in the 443 

mid-troposphere. However, in CTRL2 the cold temperature on the east side of the storm is 444 

noticeably weaker compared to the GFS analysis. In contrast, GMI2 has more dominant cold air 445 

accumulated in the east sector of the storm, resembling the cold air configuration seen in the GFS 446 

analysis, even though the magnitude and spread are still underestimated.  447 

Figure 16 shows the vertical profiles of RMSE for temperature and specific humidity 448 

within a 600-km radius of the observed storm center, averaged over 30-h forecasts from each 449 

analysis of all analysis-forecast cycles of the genesis of Matthew (CTRL2 and GMI2). For the 450 

errors in the temperature field, assimilation of GMI data has a positive impact throughout almost 451 

the entire troposphere, especially below the 600 hPa pressure level. For specific humidity, obvious 452 

error reduction can be seen around the 500 hPa pressure level. 453 

 In fact, during the genesis phase of Matthew, GMI overpasses are overlapped with other 454 

microwave sensors that have similar humidity profiling channels, including AMSU-A, MHS, and 455 

ATMS, as shown in Figures 8c and d. These sensors have humidity sensor channels similar to 456 
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those of GMI near 23.8 GHz and 183 GHz.  To further investigate the impact of GMI on HWRF 457 

forecasts in this type of case, another set of experiments is conducted, called Base and Base+GMI 458 

in Table 1. The Base is similar to CTRL2, expect no satellite observations are assimilated. GMI 459 

clear-sky radiance is assimilated in Base+GMI, along with other data are assimilated into the Base, 460 

including conventional observations, GPS-RO data, and satellite-retrieved wind. In addition, 461 

considering the early results of CTRL2 and GMI2 (Figure 10), the evaluation of forecast impacts 462 

is conducted for the first 60 h forecasts to emphasize Matthew’s genesis and rapid intensification 463 

phases only, and also to obtain the clear influences of data assimilation (e.g., initial conditions) 464 

that are commonly best shown in the short-range forecasts. 465 

             Figure 17 shows a comparison of 500- to 850-mb averaged RMSE of specific humidity 466 

forecasts between CTRL2, GMI2, Base, and Base+GMI. Figures 17 a and b show that CTRL2 and 467 

GMI2 have a rather similar spatial distribution of specific humidity RMSE. Clearly, assimilating 468 

GMI clear-sky radiance provides only a small improvement in the moisture field, which is 469 

consistent with the result shown in Figure 17b. In Figure 17c, when no radiance observation is 470 

assimilated, the Base experiment shows the largest error in the moisture field among all 4 471 

experiments, especially on both the northeast and northwest sides of the storm. When GMI data 472 

are added, Base+GMI shows a noticeable reduction in RMSE in specific humidity compared to 473 

the Base experiment, as shown in Figure 17d, which reveals the sole impact of GMI data 474 

assimilation on the specific humidity when other similar satellite sensors are not present. In 475 

addition, a comparison of Figure 17d with Figures 17a and b shows that the overall spatial 476 

distribution of RMSE in Base+GMI is similar to that in CTRL2 and GMI2, indicating that the 477 

constraints imposed by GMI data assimilation on specific humidity are consistent with other 478 

sensors, hence resulting in a similar improvement.  479 
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     Figure 18 shows the mean errors for minimum SLP, MSW, and track forecasts in Base and 480 

Base+GMI, averaged over the forecasts from the analyses of all the analysis-forecast cycles. It is 481 

found that without the presence of other sensors, the assimilation of GMI clear-sky radiance alone 482 

is also able to provide similar positive impacts on HWRF forecasts during Matthew’s genesis 483 

phase.  484 

5. Summary and concluding remarks 485 

       This study examines the impact of assimilating GMI clear-sky radiance on HWRF hurricane 486 

forecasts using the GSI-based hybrid ensemble-3DVar data assimilation system. Prior to 487 

assimilating the radiance, bias corrections are conducted using a two-step approach. First, a static 488 

bias correction is used to derive a rough estimate of the bias correction coefficient using regression 489 

on a representative sample of radiance departure. The estimated bias correction coefficients are 490 

then treated as a first guess to go through a series of iterative procedures using the variational bias 491 

correction capability in GSI to capture the small-time variation of the coefficients.  492 

         Hurricane Joaquin in 2015 and Matthew in 2016 are used as case studies to evaluate the 493 

impact of assimilating GPM-GMI clear-sky radiance on hurricane analysis and forecasts. For the 494 

mature phase of Joaquin, assimilating GMI radiance results in significant improvement in the track 495 

forecast, especially during its hairpin turn. Comparing against ECMWF-interim data, we found a 496 

significant improvement in the forecast of the geopotential height field in the near-hurricane 497 

environment, leading to a more realistic interaction between the simulated hurricane vortex and 498 

the nearby mid- to upper-level trough. The overall impact on the intensity forecast of the mature 499 

phase of Joaquin is significant in short-range (60-h) but relatively modest over 120-h forecasts. 500 

This is mostly due to the fact that clear-sky radiance observations occur away from the inner-core 501 

region of the hurricane.  502 
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For the genesis phase of Matthew, forecast results show that assimilating GMI radiance 503 

improves the intensity forecast, especially during the first 48- to 60-hour forecast. Close 504 

examination of the forecast result using GFS analysis shows that assimilating GMI clear-sky 505 

radiance improves the forecast of mid- to lower-level cold air aggregated on the northeast side of 506 

the storm, which causes Matthew’s intensification to slow down. Using GFS analysis as reference, 507 

the overall RMSE statistics show a clear improvement in temperature throughout the entire 508 

troposphere and in low- to mid-level specific humidity in the near-hurricane environment (radius 509 

less than 500 km), even when other microwave sounders are present (e.g., AMSU-A, ATMS, MHS, 510 

etc.). 511 

 An additional experiment is performed for the mature phases of Matthew, during which 512 

Matthew exhibits relatively small uncertainty in both track and intensity. The overall result of this 513 

phase shows that while the impact of GMI on both track and intensity is rather small, no negative 514 

impact is seen. 515 

 The experiments performed in this study indicate that there is a great potential to assimilate 516 

GMI satellite radiances into the regional hurricane prediction models (e.g., HWRF) to improve the 517 

operational hurricane prediction. However, numerical experiments from this paper did not fully 518 

follow the operational HWRF analysis and forecast procedures (e.g., no tail Doppler radar data 519 

assimilation; no vortex intensity correction; with the emphasis on short-range forecasts only, etc.). 520 

Meanwhile, the operational HWRF model has been updated at the time when this paper was written. 521 

Therefore, future work will further examine the impacts of GMI data assimilation on operational 522 

HWRF hurricane analyses and forecasts and achieve the statistical significance. The investigation 523 

will also extend to assimilating GMI all-sky radiance, especially in the hurricane inner-core 524 

regions. Moreover, although the two-step bias correction methods in this study shed light on bias 525 
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correction in the regional model, additional efforts still required to address the issue adequately in 526 

the hurricane environment.     527 
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Figure Captions 663 

Figure 1. GFS analysis of sea level pressure (color contours, units hPa) and storm center from 664 

NHC best track (black storm sign) at 0000 UTC 2 October 2015 for Hurricane Joaquin.  HWRF 665 

model forecast domains, as indicated by d01, d02, and d03, and HWRF data assimilation domains, 666 

as indicated by ghost d02 (black shaded area) and ghost d03 (pink shaded area), are also indicated.  667 

Figure 2: Spatial distribution of (a) GMI overpass over ghost d02 at 0000 UTC 2 October 2015, 668 

with data that passed QC (colored with O-F values) and failed QC (gray), and (b) GMI 669 

observations that failed QC shaded with different colors to denote the type of failure (blue: CLW 670 

QC; green: GWP QC; red: emissivity QC). Ghost d02 is shown as an inner domain inside a 671 

longitude-latitude box. The hurricane center is indicated by the black cross at the domain center. 672 

Figure 3: Two-dimensional histogram showing the dependence of the O-F sample (collected from 673 

26 September 2015 to 9 October 2015) on CLW (left column, (kg/m2)), Tlap (middle column, (K)), 674 

and the field of view number (FOVN, right column, (rad)) for Channels 3, 5, 6, 8, and 10. The y-675 

axis denotes the O-F value, and the x-axis represents the predictor. The flat distribution around 0 676 

is unbiased. 677 

Figure 4:  Variation of BC coefficients with the iteration number obtained from experiment GMI1 678 

for (a) constant offset, (b) CLW predictor (CLW), (c) transmittance lapse rate (Tlap), and (d) scan 679 

angle. 680 

Figure 5: O-F statistics against CLW predictor before (left) and after BC (middle). Histogram of 681 

O-F values is shown in the right column. Data sample consists of assimilated GMI observations 682 

from 4 analysis-forecast cycles of the mature phase of Joaquin that have major GMI overpasses in 683 

the parent domain (0600 UTC 1 October, 1800 UTC 1 October, 0200 UTC 2 October, and 0600 684 

UTC 2 October 2015). 685 
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Figure 6: Comparison of tracks between NHC best track (black curve) with 120-h HWRF 686 

forecasts (colored lines) initialed by each of the analyses generated in the 7 analysis-forecast cycles 687 

(as listed in the legend) for experiments without and with GMI data assimilation for (a) CTRL1 688 

and (b) GMI1. (c) is the 120-h mean track error averaged over the all 7 forecasts in (a) and (b), for 689 

CTRL1 (red) and GMI1 (blue).  690 

Figure 7:  Aggregated minimum SLP and maximum surface wind forecasts of (a and c) CTRL1 691 

and (b and d) GMI1 (colored curves) compared with NHC best-track data (black curve; 06 UTC 692 

UTC 01 Oct to 1800 UTC 07 Oct 2015) for the 120-h forecast started at the analysis time in all 7 693 

analysis-forecast cycles (as listed in the legend). (e) and (f) show mean forecast errors of minimum 694 

sea level pressure and maximum surface wind averaged over the forecasts started at the analysis 695 

time in all 6 analysis-forecast cycles (6-hourly from 06 UTC 01 Oct to 18 UTC 02 Oct 2015) for 696 

CTRL1 (red) and GMI1 (blue). In (e) and (f), the colored numbers on the left and right show the 697 

averaged errors over all 7 forecasts in first 60h and 120h HWRF integration, respectively. 698 

Figure 8: Assimilated brightness temperature observations of all microwave sensors during the 699 

mature phase of Joaquin at (a) 0600 UTC 1 October and (b) 0600 UTC 2 October 2015, and during   700 

the mature phase of Matthew at (c) 1800 UTC 27 September and (d) 1200 UTC 28 September 701 

2016. GMI overpasses are highlighted in purple. 702 

 Figure 9: Comparison of tracks between NHC best track (black curve) with 120-h HWRF 703 

forecasts (colored lines) initialed by each of the analyses generated in the 6 analysis-forecast cycles 704 

(as listed in the legend) for experiments without and with GM2 data assimilation for (a) CTRL2 705 

and (b) GMI2. (c) is the 120-h mean track error averaged over the all 6 forecasts in (a) and (b), for 706 

CTRL2 (red) and GMI2 (blue).  707 

Figure 10:  Aggregated minimum SLP and maximum surface wind forecasts of (a and c) CTRL2 708 
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and (b and d) GMI2 (colored curves) compared with NHC best-track data (black curve; 1800 UTC 709 

27 Sep to 0500 UTC Oct 2016) for the 120-h forecast started at the analysis time in all 6 analysis-710 

forecast cycles (as listed in the legend). (c) and (d) show mean forecast errors of minimum sea 711 

level pressure and maximum surface wind averaged over the forecasts started at the analysis time 712 

in all 6 analysis-forecast cycles (6-hourly from 1800 UTC 27 September to 0000 UTC 29 713 

September 2016) for CTRL2 (red) and GMI2 (blue). In (e) and (f), the colored numbers on the left 714 

and right show the averaged errors over all 6 forecasts in first 60h and 120h HWRF integration, 715 

respectively. 716 

Figure 11:  60-hour mean forecast error of (a) track, (b) minimum sea level pressure, and (c) 717 

maximum surface wind averaged over forecasts started from the analysis time of all 7 analysis-718 

forecast cycles for the mature phase of Matthew (6-hourly from 0000 UTC 3 October to 1200 UTC 719 

4 October 2016) for CTRL3 (red) and GMI3 (blue). 720 

Figure 12: Comparison of geopotential height (m) and streamline from (a, d, g) ECMWF-interim 721 

reanalysis and (b-c, e-f, and h-i) HWRF forecasts. (b, c) and (e, f) are the HWRF 42-h forecasts 722 

valid at 1800 UTC 3 October 2016 at 550 mb and 750 mb, respectively, compared with the 723 

corresponding ECMWF-interim reanalysis. (h) and (i) show 60-h HWRF forecasts valid at 1200 724 

UTC 4 October 2016 at 800 mb, compared with the corresponding ECMWF-interim reanalysis. 725 

The CTRL1 and GMI1 experiments (initiated at 0000 UTC 2 October) are shown in the middle 726 

and right panels, respectively.   727 

Figure 13: Locations and spatial distribution of model profiles and TCI sounding profiles 728 

(launched around 1800 UTC 2 October 2015, with distance less than 110 km from the hurricane 729 

center). Hurricane centers are shown by dotted circles. 730 

Figure 14:    Vertical profiles of (a, b) root mean square error, and (c, d) mean bias (solid colored 731 
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lines) and standard deviation (shading) of specific humidity and temperature forecasts and root 732 

mean square errors of (e) radial and (f) tangential wind forecasts (initiated at 0600 UTC 2 October 733 

and 1200 UTC 2 October 2015) for CTRL1 (red) and GMI1 (blue). Each of the forecasts is verified 734 

against TCI soundings launched within a 150-km radius of the hurricane center around 1800 UTC 735 

2 October and 1800 UTC 3 October 2015, giving a sample size of 156. Similar to (e) and (f), the 736 

root mean square errors of (g) radial and (h) tangential wind forecasts are verified against TCI 737 

soundings launched between 150 km and 600 km from hurricane centers, giving a sample size of 738 

114.   739 

Figure 15:  Comparison of 30-h temperature (K) forecasts at 650 mb, valid at 1800 UTC 29 740 

September 2016, for (b) CTRL2 and (c) GMI2 against (a) GFS analysis at the corresponding time. 741 

Hurricane centers are indicated by the crossed circles. Red circles indicate the locations of the 742 

large pool of cold air to the east of storm. 743 

Figure 16:  Root mean square error for 30-h forecasts of (a) temperature and (b) specific humidity, 744 

verified against GFS analysis. Statistics are averaged over forecasts started from the analysis time 745 

of all 6 analysis-forecast cycles (6-hourly from 1800 UTC 27 September to 0000 UTC 29 746 

September 2016 during the genesis phase of Matthew) within a 600-km radius of the hurricane 747 

centers (blue: CTRL2 and Base; red: GMI2 and Base+GMI). 748 

Figure 17: Averaged 500- to 850-mb RMSE of specific humidity at 30-h forecast (valid at 0000 749 

UTC 29 October 2016). (a) CTRL2, (b) GMI2, (c) Base, and (d) Base+GMI. RMSE is calculated 750 

based on forecasts verified against GFS analyses at the valid time. 751 

Figure 18: 60-hour mean error of (a) track, (b) minimum sea level pressure, and (c) maximum 752 

surface wind, averaged over forecasts started from each analysis time of all 6 analysis-forecast 753 

cycles of the genesis phase of Matthew (6-hourly from 1800 UTC 27 September to 0000 UTC 29 754 
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September 2016), for Base (red) and Base+GMI (blue). 755 

 756 

  757 
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Tables and Table Captions 758 

Table 1. The list of experiment configurations 759 

Table 2. Prescribed regression coefficients to calculate CLW and GWP for GMI brightness 760 

temperature included in GSI Version 3.3 (after Garrett et al. 2010) 761 

 762 

  763 
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 764 

Table 1. The list of experiment configurations 765 

 766 
Exp. Hurricane 

Case 
Data 

assimilation 
(DA) period 

DA 
domains and data 

DA cycle in 
d01 with 

GMI 
Overpass  

DA cycle in 
d02 with 

GMI 
Overpass 

CTRL1 Joaquin (2015) 
Mature 

0600 UTC 01 
– 1800 UTC 
02 October 

d01: Conv. obs., Sat. obs. 
d02: Conv. obs., Sat. obs. 
d03: Conv. obs. 
 

  

GMI1 Joaquin (2015) 
Mature 

0600 UTC 01 
– 1800 UTC 
02 October 

d01: Conv. obs., Sat. obs., GMI 
d02: Conv. obs., Sat. obs., GMI 
d03: Conv. obs. 

2015100106 
2015100112 
2015100118 
2015100200 
2015100206 
2015100218 
 

2015100106 
2015100200 
2015100206 
2015100218 

CTRL2 Matthew (2016) 
Genesis 

1800 UTC 27 
– 0000 UTC 

29 September 

d01: Conv. obs., Sat. obs. 
d02: Conv. obs., Sat. obs. 
d03: Conv. obs. 

  

GMI2 Matthew (2016) 
Genesis 

1800 UTC 27 
– 0000 UTC 

29 September 

d01: Conv. obs., Sat. obs., GMI 
d02: Conv. obs., Sat. obs., GMI 
d03: Conv. obs. 

2016092718 
2016092806 
2016092812 
2016092818 
2016092900 
 

2016092718 
2016092812 
2016092900 

CTRL3 Matthew (2016) 
Mature 

0000 UTC 03 
– 1200 UTC 
04 October 

d01: Conv. obs., Sat. obs. 
d02: Conv. obs., Sat. obs. 
d03: Conv. obs. 
 

  

GMI3 Matthew (2016) 
Mature 

0000 UTC 03 
– 1200 UTC 
04 October 

d01: Conv. obs., Sat. obs., GMI 
d02: Conv. obs., Sat. obs., GMI 
d03: Conv. obs. 

2016100300 
2016100306 
2016100312 
2016100318 
2016100400 
2016100406 
2016100412 
 

2016100300 
2016100306 
2016100312 
2016100318 
2016100412 

Base Matthew (2016) 
Genesis 

1800 UTC 27 
– 0000 UTC 

29 September 

d01: Conv. obs, No Sat. Obs. 
d02: Conv. obs, No Sat. Obs. 
d03: Conv. obs. 
 
 

  

Base+GMI Matthew (2016) 
Genesis 

1800 UTC 27 
– 0000 UTC 

29 September 

d01: Conv. obs., add GMI 
d02: Conv. obs., add GMI 
d03: Conv. obs. 

2016092718 
2016092806 
2016092812 
2016092818 
2016092900 

2016092718 
2016092812 
2016092900 

 767 
  768 



 37 

 769 
Table 2. Prescribed regression coefficients to calculate CLW and GWP  770 

for GMI brightness temperature included in GSI Version 3.3 (after Garrett et al. 2010) 771 

 772 
CLW GWP 

a<,GHI -0.61127 a<,[I\ -3541.46329 

c5 0.00378 g5 0.00393 

c8 -0.00149 g8 0.00088 

cP 0.03438 gP 0.00063 

cU 0.01670 gU -0.00683 

cr 0.00228 gr 0.00333 

cV 0.03884 gV -0.00382 

cO 0.02345 gO 0.00452 

𝑐58 -0.00036 𝑔58 0.04765 

𝑐5P 0.00044 𝑔5P -0.00491 

𝑐5̂ 1.95559 �̂� 11.98897 

𝑐8̂ 2.15143   

 773 
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 774 
 775 

Figure 1. GFS analysis of sea level pressure (color contours, units hPa) and storm center from 776 

NHC best track (black storm sign) at 0000 UTC 2 October 2015 for Hurricane Joaquin.  HWRF 777 

model forecast domains, as indicated by d01, d02, and d03 and HWRF data assimilation domains, 778 

as indicated by ghost d02 (black shaded area), and ghost d03 (pink shaded area) are also indicated.  779 

 780 
 781 
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 782 
 783 

 Figure 2: Spatial distribution of (a) GMI overpass over ghost d02 at 0000 UTC 2 October 2015, 784 

with data that passed QC (colored with O-F values) and failed QC (gray), and (b) GMI 785 

observations that failed QC shaded with different colors to denote the type of failure (blue: CLW 786 

QC; green: GWP QC; red: emissivity QC). Ghost d02 is shown as an inner domain inside a 787 

longitude-latitude box. The hurricane center is indicated by the black cross at the domain center. 788 

 789 

 790 
791 
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 792 
 793 

Figure 3: Two-dimensional histogram showing the dependence of O-F sample (collected from 26 794 

Sep 2015 to 9 Oct 2015) on CLW (left column, (kg/m2)), Tlap (middle column, (K)) and the field 795 



 41 

of view number (FOVN, right column, (rad)) for Channel 3, 5, 6, 8 and 10. The y-axis denotes O-796 

F value, x-axis represents predictor. The flat distribution around 0 is unbiased. 797 

  798 
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 799 
 800 

 801 

Figure 4:  Variation of BC coefficients with the iteration number obtained from Experiment GMI1  802 

for (a) constant offset, (b) CLW predictor (CLW), (c) transmittance lapse rate (Tlap); and (d) Scan 803 

angle. 804 

 805 

 806 

(a) (b)

(c) (d)
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 807 
 808 

Figure 5:   O-F statistics against CLW predictor before (left) and after BC (middle). Histogram of 809 



 44 

O-F values is shown in the right column. Data sample consists of assimilated GMI observations 810 

from 4 analysis-forecast cycles of the mature phase of Joaquin that have major GMI overpasses in 811 

the parent domain (0600 UTC 1 October, 1800 UTC 1 October, 0200 UTC 2 October, and 0600 812 

UTC 2 October 2015). 813 

  814 
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 815 

  816 

 817 
Figure 6: Comparison of tracks between NHC best track (black curve) with 120-h HWRF 818 

forecasts (colored lines) initialed by each of the analyses generated in the 7 analysis-forecast cycles 819 

(as listed in the legend) for experiments without and with GMI data assimilation for (a) CTRL1 820 

and (b) GMI1. (c) is the 120-h mean track error averaged over the all 7 forecasts in (a) and (b), for 821 

CTRL1 (red) and GMI1 (blue).  822 

  823 
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824 

 825 

   826 
Figure 7:  Aggregated minimum SLP and maximum surface wind forecasts of (a and c) CTRL1 827 

and (b and d) GMI1 (colored curves) compared with NHC best-track data (black curve; 06 UTC 828 



 47 

UTC 01 Oct to 1800 UTC 07 Oct 2015) for the 120-h forecast started at the analysis time in all 7 829 

analysis-forecast cycles (as listed in the legend). (e) and (f) show mean forecast errors of minimum 830 

sea level pressure and maximum surface wind averaged over the forecasts started at the analysis 831 

time in all 6 analysis-forecast cycles (6-hourly from 06 UTC 01 Oct to 18 UTC 02 Oct 2015) for 832 

CTRL1 (red) and GMI1 (blue). In (e) and (f), the colored numbers on the left and right show the 833 

averaged errors over all 7 forecasts in first 60h and 120h HWRF integration, respectively. 834 

  835 
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 836 

 837 
 838 

Figure 8:  Assimilated brightness temperature observations of all microwave sensors during the 839 

mature phase of Joaquin at (a) 0600 UTC 1 October and (b) 0600 UTC 2 October 2015, and during 840 

analysis cycles of the mature phase of Matthew at (c) 1800 UTC 27 September and (d) 1200 UTC 841 

28 September 2016. GMI overpasses are highlighted in purple. 842 

 843 

 844 
845 
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 846 

 847 
 848 
Figure 9: Comparison of tracks between NHC best track (black curve) with 120-h HWRF 849 

forecasts (colored lines) initialed by each of the analyses generated in the 6 analysis-forecast cycles 850 

(as listed in the legend) for experiments without and with GM2 data assimilation for (a) CTRL2 851 

and (b) GMI2. (c) is the 120-h mean track error averaged over the all 6 forecasts in (a) and (b), for 852 

CTRL2 (red) and GMI2 (blue).  853 

  854 
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 855 
 856 

 857 

 858 
 859 

 860 
 861 

Figure 10:  Aggregated minimum SLP and maximum surface wind forecasts of (a and c) CTRL2 862 

and (b and d) GMI2 (colored curves) compared with NHC best-track data (black curve; 1800 UTC 863 
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27 Sep to 0500 UTC Oct 2016) for the 120-h forecast started at the analysis time in all 6 analysis-864 

forecast cycles (as listed in the legend). (c) and (d) show mean forecast errors of minimum sea 865 

level pressure and maximum surface wind averaged over the forecasts started at the analysis time 866 

in all 6 analysis-forecast cycles (6-hourly from 1800 UTC 27 September to 0000 UTC 29 867 

September 2016) for CTRL2 (red) and GMI2 (blue). In (e) and (f), the colored numbers on the left 868 

and right show the averaged errors over all 6 forecasts in first 60h and 120h HWRF integration, 869 

respectively. 870 

 871 

  872 
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 873 
Figure 11:  60-hour mean forecast error of (a) track, (b) minimum sea level pressure, and (c) 874 

maximum surface wind averaged over forecasts started from the analysis time of all 7 analysis-875 

forecast cycles for the mature phase of Matthew (6-hourly from 0000 UTC 3 October to 1200 UTC 876 

4 October 2016) for CTRL3 (red) and GMI3 (blue).  877 
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 878 

 879 
 880 
 881 

Figure 12:    Comparison of geopotential height (m) and streamline from (a, d, g) ECMWF-interim 882 

reanalysis and (b-c, e-f, and h-i) HWRF forecasts. (b, c) and (e, f) are the HWRF 42-h forecasts 883 

valid at 1800 UTC 3 October 2016 at 550 mb and 750 mb, respectively, compared with the 884 

corresponding ECMWF-interim reanalysis. (h) and (i) show 60-h HWRF forecasts valid at 1200 885 

UTC 4 October 2016 at 800 mb, compared with the corresponding ECMWF-interim reanalysis. 886 

The CTRL1 and GMI1 experiments (initiated at 0000 UTC 2 October) are shown in the middle 887 

and right panels, respectively. 888 

  889 
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 890 

 891 
 892 

Figure 13: Locations and spatial distribution of model profiles and TCI sounding profiles 893 

(launched around 1800 UTC 2 October 2015, with distance less than 110 km from the hurricane 894 

center). Hurricane centers are shown by dotted circles.  895 
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Figure 14:    Vertical profiles of (a, b) root mean square error, and (c, d) mean bias (solid colored 900 

lines) and standard deviation (shading) of specific humidity and temperature forecasts and root 901 

mean square errors of (e) radial and (f) tangential wind forecasts (initiated at 0600 UTC 2 October 902 

and 1200 UTC 2 October 2015) for CTRL1 (red) and GMI1 (blue). Each of the forecasts is verified 903 

against TCI soundings launched within a 150-km radius of the hurricane center around 1800 UTC 904 

2 October and 1800 UTC 3 October 2015, giving a sample size of 156. Similar to (e) and (f), the 905 

root mean square errors of (g) radial and (h) tangential wind forecasts are verified against TCI 906 

soundings launched between 150 km and 600 km from hurricane centers, giving a sample size of 907 

114.   908 

  909 
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 910 

 911 
 912 

Figure 15:   Comparison of 30-h temperature (K) forecasts at 650 mb, valid at 1800 UTC 29 913 

September 2016, for (b) CTRL2 and (c) GMI2 against (a) GFS analysis at the corresponding time. 914 

Hurricane centers are indicated by the crossed circles. Red circles indicate the locations of the 915 

large pool of cold air to the east of storm. 916 

  917 
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 918 
 919 

Figure 16:  Root mean square error for 30-h forecasts of (a) temperature and (b) specific humidity,   920 

verified against GFS analysis. Statistics are averaged over forecasts started from the analysis time 921 

of all 6 analysis-forecast cycles (6-hourly from 1800 UTC 27 September to 0000 UTC 29 922 

September 2016 during the genesis phase of Matthew) within a 600-km radius of the hurricane 923 

centers (blue: CTRL2 and Base; red: GMI2 and Base+GMI). 924 

  925 



 59 

 926 

Figure 17:  Averaged 500- to 850-mb RMSE of specific humidity at 30-h forecast (valid at 0000 927 

UTC 29 October 2016). (a) CTRL2, (b) GMI2, (c) Base, and (d) Base+GMI. RMSE is calculated 928 

based on forecasts verified against GFS analyses at the valid time. 929 
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 931 
 932 

 Figure 18: 60-hour mean error of (a) track, (b) minimum sea level pressure, and (c) maximum 933 

surface wind, averaged over forecasts started from each analysis time of all 6 analysis-forecast 934 

cycles of the genesis phase of Matthew (6-hourly from 1800 UTC 27 September to 0000 UTC 29 935 

September 2016), for Base (red) and Base+GMI (blue). 936 


